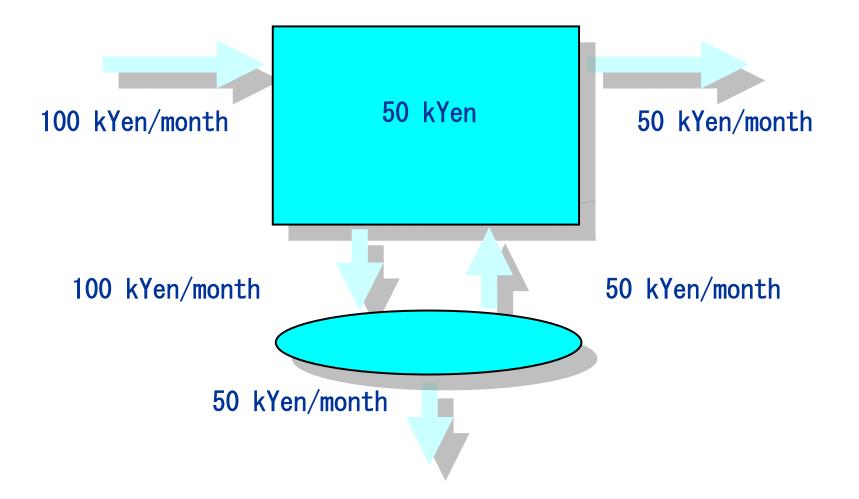
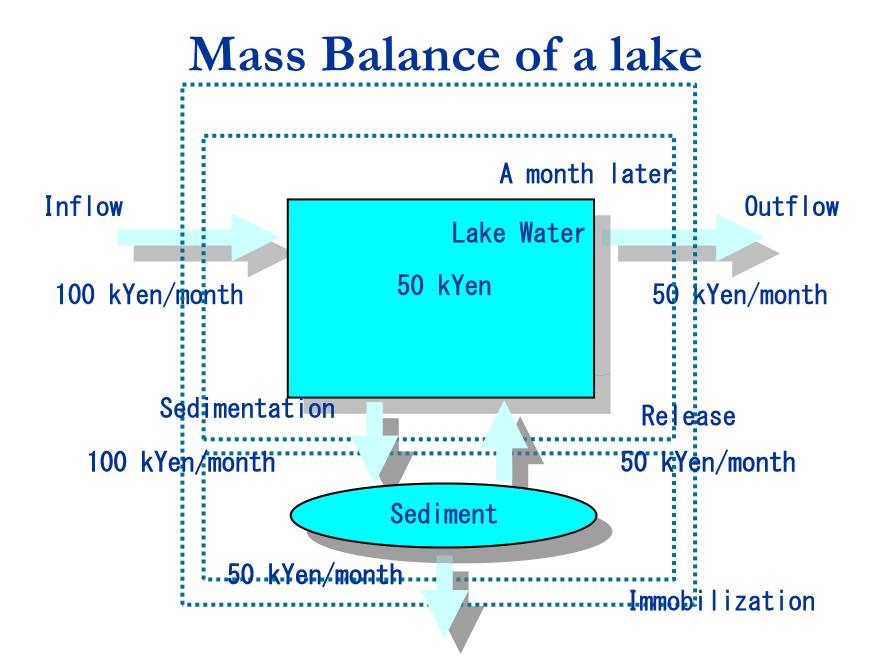
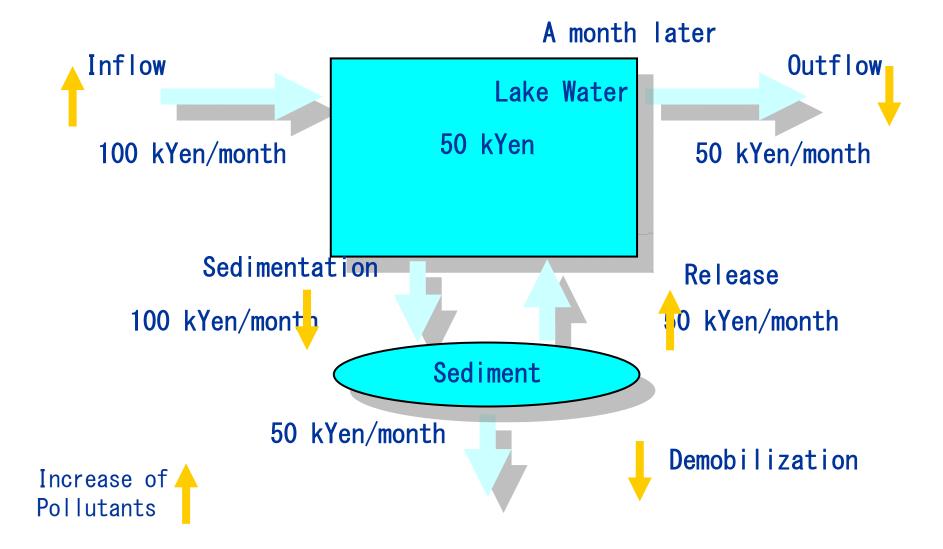
Shinji Ide, the Univ. of Shiga Pref.

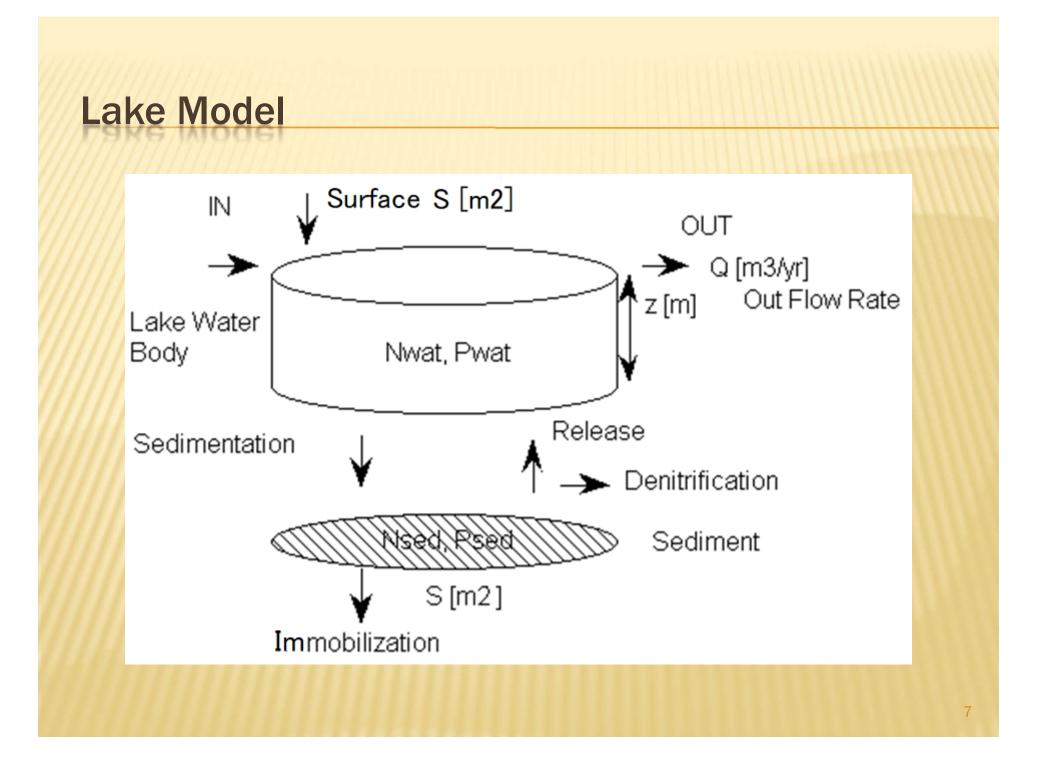
INTRODUCTION TO LAKE MODELING


Mass Balance of a river

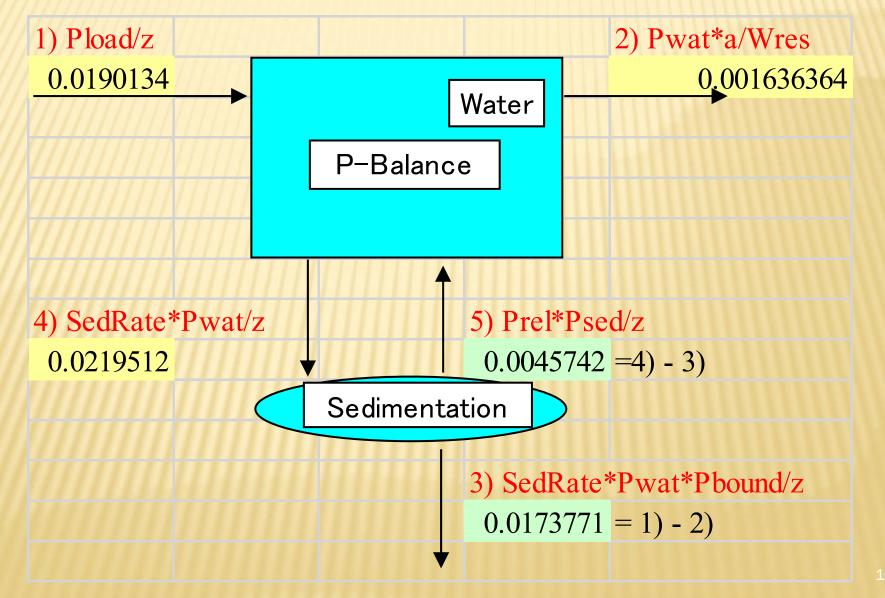


Mass Balance of a river




Mass Balance of a lake

Water Quality Degradation of a lake Mass Balance wrt Pollutants


× Lake Model.xlsx

. 5) - C								Lakel	Model.xls	sx - Exce								Ā		8	×
アイル	ホーム	挿入	ページレー	イアウト 数式	データ	校閲	表示	開発	Acroba	t 🔉		V作業を入力	っしてください							井手 慎	司及其	共有
				1																		
3		×	√ fx																			
A .ske Mode	В	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	S	т	U	V	-
	ameters for	Lake Biwa		L. Biwa																		
wat	Unit g/m3	0.000	·	Physical Dimension			Total															_
wat sed	g/m3 g/m3	0.009		Surface Area (km2) Volume (km3)	616 27.3	58 0.2	674 27.5															-
load	g/m2/yr	0.779551		Max. Depth (m)	104	8																
rel bound	1/yr	0.8		Mean Depth (m)	44		41															
bound	-	0.791622		Retention Time (yr) Water Quality (199	5.5	0.04	5.5															
lwat	g/m3	0.3		Transparency (m)	4.7																	
lsed	g/m3	25.84899		pH	7.9		(7.7															
load rel	¢/m2/yr 1/yr	11.70408 0.8		BOD (mg/L) COD (mg/L)	0.7		0.7		-	_												+
bound	-	0.261457		SS (mg/L)	1.5	7.2	1.5															
enit	1/yr	0.2		T-N (mg/L)	0.28		0.28															-
	m	41		T-P (mg/L) Chi-a (ug/L)	0.009		0.009	5														+
fres	yr	5.5		Loadings (1990)																		
edRate	m/yr	100		T-N loading (ton/y			7889															-
	-	1	-	T-P loading (ton/yr)		525															-
) Pload/z				2) Pwat*a/Wres																		
0.019013		Ē	Water	0.0016363	54																	
		P-Balance																-				-
		1 Darance																				
) SedRate	*Pwat/z	Ī	5) Prel*Ps	sed/z		Psed		0.234425														+
0.021951			0.004574			SedRate*Pbo		79.16218														
		Se dim en ta	tion			SedRate Pbound		100 0.791622														+
			3) SedRate	*Pwat*Pbound/z		rooma		0.791022														+
			0.017377	7 = 1) - 2)																		
		*																				+
) Nload/z				2) Nwat*a/Wres																		
0.285465		l.	Water —	0.0509090	91																	+
		N-Balan	ce	3) Nwat*Denit																		
				0.0:																		
		•		•	-7.6E-17																	+
) SedRate	*Nwat/z		6) Nrel*Nr			Nsed		25.84899														
0.682927			0.504371	1 =4) - 3)		SedRate*Nb	ound	26.14574														
		Sedimenta	tion			SedRate Nbound		100 0.261457														+
				*Nwat*Nbound/z																		\pm
			0.178556	5 =1) - 2) - 3)																		
		•																				+
		ko Mara	Palance	Lake Di		oulation	Concil	h	pirioal ra	odola			:								1	
		ake Mass	вајапсе	E Lake Biv	va Cal	culation	Grap	em em	pirical m	odels	+		-									Þ
完了																	Ħ]	-	-+ 7	75%
م i		く力して検				0	⊟i					秀 🔹	1 P	· 🦪	×∃					A 2020	:20	5

Physical Dimension	North Basin	South Basin	Total
Surface Area (km2)	616	58	674
Volume (km3)	27.3	0.2	27.5
Max. Depth (m)	104	8	
Mean Depth (m)	44	3.5	41
Retention Time (yr)	5.5	0.04	5.5
Water Quality (1990)			
Transparency (m)	4.7	1.6	
рН	7.9	7.9	
BOD (mg/L)	0.7	1.1	0.7
COD (mg/L)	2.3	3	2.3
SS (mg/L)	1.5	7.2	1.5
T-N (mg/L)	0.28	0.4	0.28
T-P (mg/L)	0.009	0.025	0.009
Chl-a (ug/L)	3.7	9.8	3.7
Loadings (1990)			
T-N loading (ton/yr)			7889
T-P loading (ton/yr)			525

× Relevant Data of Lake Biwa

× Mass Balacne of Lake Biwa wrt T-P

1) Pload/z

- "Pload" [g/m²/yr] is phosphorus input
 "loading" to the lake.
- In limnology, "Pload" is typically defined as [g/m²/yr]. = (T-P loading)/S (surface area)
- * "Pload/z" is hypothetical concentration of T-P coming into the lake. = (T-P loading)/(S*z) = (T-P loading)/V (volume of the lake)
- × Where "z" is the mean depth.

1) Pload/z for L. Biwa

- Dividing T-P loading (525 ton/yr) by surface area (674 km²), "Pload" = 0.7796 [g/m²/yr].
- Dividing "Pload" by "z" (41 m), "Pload/z" = 0.0190 [g/m³/yr].
- The concentration of T-P in the lake water "Pwat" = 0.0090 [g/m³]

2) Pwat*a/Wres

- Hypothetical concentration of T-P going out of the lake.
- The mass flow of T-P going out of the lake can be calculated with "Pwat*Q" [g/yr], where Q is the outflow rate.
- Dividing "Pwat*Q" by "V" [m³], "Pwat*Q/V" is to be hypothetical concentration of T-P going out of the lake.

2) Pwat*a/Wres

- * "Wres" is the mean residence time of the lake water and defined as "V/Q" in limnology.
- x Thus "Pwat*Q/V" = "Pwat/Wres".
- * "a" is a correction factor of nutrient output due to thermocline formation.
- In case of strong thermocline, correction with "a" (0-1) would be need for using Pwat as the outflow concentration.

2) Pwat*a/Wres

If "Wres" is 2 years, it takes 2 years for all water in the lake would be replaced by new water. In other words, within a year, half of the water and contained nutrients in the water would be going out of the lake.

As a result, hypothetical concentration of T-P going out of the lake would be half of the current concentrations, and can be expressed by "Pwat/Wres".

2) Pwat*a/Wres for L. Biwa

- * "Pwat" is 0.0090 [g/m³], "Wres" is 5.5 [yr], and assuming "a" is 1, then "Pwat*a/Wres" = 0.0016 [g/m³/yr].
- × Recall that "Pload/z" = $0.0190 [g/m^3/yr]$.
- x Only 1/10 of T-P coming into the lake would be going out with the outflow of L. Biwa.

3) SedRate*Pwat*Pbound/z

- Assuming that the lake is in steady state or pseudo-steady state.
- * "3) immobilization" can be calculated by 1) –
 2): 0.0190 0.0016 = 0.0174 [g/m³/yr].
- Some of nutrients settled down to the sediment would be immobilized there, and never be released back again to the lake water.

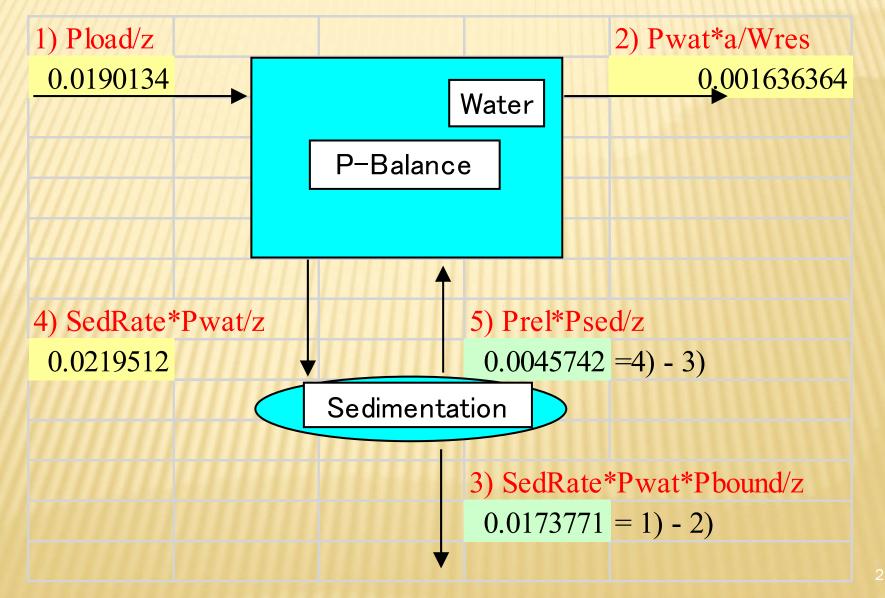
4) SedRate*Pwat/z

- * "SedRate" is a velocity at which the detritus is (containing T-P) settling down.
- * "SedRate/z" is a ratio of detritus to the entire one to be removed from the lake water and moving to the sediment within a year.
- Multiplying "SedRate/z" by "Pwat", "SedRate* Pwat/z" is hypothetical concentration of T-P settling down and reaching the sediment.

3) SedRate*Pwat*Pbound/z

- The ratio of immobilized T-P to the entire T-P settled down to the sediment is defined as "Pbound", which is a dimensionless parameter ranging from 0 to 1.
- * Hypothetical concentration of T-P to be immobilized in the sediment would be expressed by 4) "SedRate*Pwat/z"*"Pbound", which is 3) "SedRate*Pwat*Pbound/z".

4) SedRate*Pwat/z for L. Biwa


- * "SedRate" is 100 [m/yr], "Pwat" is 0.0090 [g/m³], and "z" is 41 [m].
- * "SedRate*Pwat/z" = 100*0.0090/41 = 0.0220 [g/m³/yr].

Recall that "Pload/z" = 0.0190 [g/m³/yr], the value which is very close to "SedRate*Pwat/z" = 0.0220 [g/m³/yr].

5) Prel*Psed/z

- × In steady state, "5) release" can be calculated by (4) - 3: (0.0220 - 0.0174 = 0.0046) $[g/m^3/yr]$.
- × Some of nutrients being accumulated in the sediment would be released back again to the lake water.
- **×** The release rate of T-P is expressed by a first order reaction: "Psed" (the concentration of T-P in the sediment) $[g/m^2]$ *"Prel" (the sediment release rate) [1/yr].

× Mass Balacne of Lake Biwa wrt T-P

Simultaneous Differential Equations

$$\frac{dPwat}{dt} = \frac{Pload}{z} - Pwat \cdot \frac{a}{Wres} - SedRate \cdot Pwat \cdot \frac{1}{z} + Prel \cdot Psed \cdot \frac{1}{z}$$

$$\frac{dPsed}{dt} = SedRate \cdot Pwat \cdot (1 - Pbound) - Prel \cdot Psed$$

$$\frac{dNwat}{dt} = \frac{Nload}{z} - Nwat \cdot \frac{a}{Wres} - Denit \cdot Nwat - SedRate \cdot Nwat \cdot \frac{1}{z}$$

$$+ Nrel \cdot Nsed \cdot \frac{1}{z}$$

$$\frac{dNsed}{dt} = SedRate \cdot Nwat \cdot (1 - Nbound) - Nrel \cdot Nsed$$

Empirical Models

- × Chlorophyll [mg/L] = 0.000073 (Pwat 1000)^{1.4}
- × Zooplankton [mg/L] = 0.038 (Pwat 1000)^{0.64}
- × Fish [mg ww/m²] = 0.810 (Pwat-1000)^{0.71}
- Average primary production [mg/L/day] = (10000-Pwat - 79)/1000
- Maximum primary production [mg/L/day] = (20000 ·Pwat - 77)/1000
- × Average fish yield [mg ww/m²/yr] = 7.1.Pwat

Assignment (1)

- In Sheet "Lake Mass Balance" of "Lake Model.xlsx:
- * (Step 1) Pick up a lake, any lake, in the world for model simulation, and type in the lake name in "D1" yellow cell of the Sheet.
- It is recommended that you choose a lake wellstudied.

Assignment (2)

- * (Step 2) Find out or identify necessary data for the selected lake, and type in those data in yellow cells of 1) to 7) in "Table: Relevant Data".
- Those data can be obtained in the literature or on the Internet. Be careful of units!
- If you type in those data, then values of "Table: Model Parameters" will be automatically recalculated.

Assignment (3)

- (Step 3) Confirm that all the values in "Table: Model Parameters" are positive (not negative) and come within appropriate ranges.
- If not, please examine whether "1) Pload/z" > "2) Pwat*a/Wres" and "1) Nload/z" > "2) Nwat*a/Wres", or not. (IN > OUT)
- If not, "6) T-N loading" and/or "7) T-P loading" might be underestimated.

Assignment (4)

- × (Step 4) Adjust some parameters, if necessary.
- It is recommended that you should change "8) SedRate" and/or "9) Denit" in the table.
- Confirm the results of two figures of mass balance with respect to T-P and T-N in Sheet "Lake Mass Balance".

* "1) Pload/z" and "4) SedRate*Pwat/z", and "1) Nload/z" and "5) SedRate*Nwat/z" should be close, or at least be in the same magnitude.

Assignment (5)

- In Sheet "Calculation" and "Graph":
- (Step 5) Confirm that simulation results show the lake is in steady state.
- You copy those values of model parameters and paste them as "values" at "Table: Model parameters" in Sheet "Calculation". Sheet "Calculation" automatically run the model with the parameters.
- If no problem, all four graphs in Sheet "Graph" should be all flat lines.

Assignment (6)

- × (Step 6) Do "What If" simulations.
- For the following A) to G) cases, first predict respectively what happens to "Pwat" & "Psed", and then examine your prediction with simulation.
- Specifically, are "Pwat" & "Psed" going up or down, or no change? If any change, are those going to reach new stable values or be back to the original values?

Assignment (7)

- × A) What If "Pwat" to be zero?
- × B) What If "Psed" to be zero?
- C) What If "Pload" to be half?
- D) What If "Pbound" to be half?
- × E) What If "z" to be half?
- **×** F) What If "Wres" to be half?
- K G) What If "SedRate" to be half?
- Restore changed parameter to the original one before going to the next simulation.